For the circuit shown below:

a. Determine the value of V_{1}.

$$
V_{1}=(10 \Omega)(2 \mathrm{~A})=20 \mathrm{~V}
$$

b. Determine the value of R_{x}.

$$
\angle 10 V=R_{x}(2 A) \Rightarrow R_{x}=\frac{40 V}{2 A}=20 \Omega
$$

c. Determine the value of V_{2}.

$$
\begin{aligned}
& V_{3}=(15 \Omega)(2 A)=30 \mathrm{~V} \\
& V_{2}=V_{1}+40 \mathrm{~V}+V_{3}=20 \mathrm{~V}+40 \mathrm{~V}+30 \mathrm{~V}=90 \mathrm{~V}
\end{aligned}
$$

d. How much power does R_{x} absorb?

$$
P_{x}=(40 \mathrm{~V})(2 A)=80 \mathrm{~W}
$$

e. How much power does the independent current source deliver?

$$
P_{s}=V_{2}(2 A)=(90 V)(2 A)=180 \mathrm{~W}
$$

